If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+24x=24
We move all terms to the left:
40x^2+24x-(24)=0
a = 40; b = 24; c = -24;
Δ = b2-4ac
Δ = 242-4·40·(-24)
Δ = 4416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4416}=\sqrt{64*69}=\sqrt{64}*\sqrt{69}=8\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{69}}{2*40}=\frac{-24-8\sqrt{69}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{69}}{2*40}=\frac{-24+8\sqrt{69}}{80} $
| 4x-16=-44 | | X+2x4=6 | | 30+.15x=15+.25x | | 5u2+6u–8=0 | | 77=65a+12 | | 88.4=d+2.4 | | -33+12x+4=3(5x-3)-8 | | 64=p+60 | | 12=-3r+54 | | 4x+2+3x-9=49 | | 27x^3+27x^2+27x=13. | | 5x=2x-28 | | 3/4x-1/2=-1+5/6x | | A={1,2,3,4}eB={1,2,3,4,5,6,7,8} | | 4x=12-6 | | -14k+28-6=7k-20 | | 43u-87=-75 | | u-87-43=-75 | | 3z-8=-2z+12 | | 5x=12-8 | | 6f+16=82 | | 2x/3+7x/9=3,9 | | 3=g-84/5 | | 9(q+2)=81 | | 4-3x=23+2(x+3) | | 22-3n=10 | | z+48/9=8 | | x=72.5+-2.5Y | | 5(s+4)=100 | | 11x-17=3x+55,x | | 18x+8x-120=0 | | 126=5y-1+4y+1+5y-1+4y+1 |